Hypomaturation Amelogenesis Imperfecta due to WDR72 Mutations: A Novel Mutation and Ultrastructural Analyses of Deciduous Teeth
نویسندگان
چکیده
BACKGROUND Mutations in WDR72 have been identified in autosomal recessive hypomaturation amelogenesis imperfecta (AI). OBJECTIVE to describe a novel WDR72 mutation and report the ultrastructural enamel phenotype associated with a different WDR72 mutation. METHODS A family segregating autosomal recessive hypomaturation AI was recruited, genomic DNA obtained and WDR72 sequenced. Four deciduous teeth from one individual with a previously published WDR72 mutation, extracted as part of clinical care, were subjected to scanning electron microscopy, energy-dispersive X-ray analysis and transverse microradiography. RESULTS A novel homozygous nonsense mutation, R897X, was identified in WDR72 in a family originating from Pakistan. Ultrastructural analysis of enamel from the deciduous teeth of an AI patient with the WDR72 mutation S783X revealed energy-dispersive X-ray analysis spectra with normal carbon and nitrogen peaks, excluding retention of enamel matrix protein. However, transverse microradiography values were significantly lower for affected teeth when compared to normal teeth, consistent with reduced mineralisation. On scanning electron microscopy the enamel rod form observed was normal, yet with inter-rod enamel more prominent than in controls. This appearance was unaltered following incubation with either α-chymotrypsin or lipase. CONCLUSIONS The novel WDR72 mutation described brings the total reported WDR72 mutations to four. Analyses of deciduous tooth enamel in an individual with a homozygous WDR72 mutation identified changes consistent with a late failure of enamel maturation without retention of matrix proteins. The mechanisms by which intracellular WDR72 influences enamel maturation remain unknown.
منابع مشابه
A Novel Homozygous WDR72 Mutation in Two Siblings with Amelogenesis Imperfecta and Mild Short Stature.
Amelogenesis imperfecta (AI) is a clinically and genetically heterogeneous group of inherited defects of enamel formation. In isolated AI (no additional segregating features), mutations in at least 7 genes are known so far, causing dominant, recessive or X-linked AI and allowing the identification of the molecular etiology in 40-50% of affected families. We report on 2 siblings (an 11-year-old ...
متن کاملMutations in the Beta Propeller WDR72 Cause Autosomal-Recessive Hypomaturation Amelogenesis Imperfecta
Healthy dental enamel is the hardest and most highly mineralized human tissue. Though acellular, nonvital, and without capacity for turnover or repair, it can nevertheless last a lifetime. Amelogenesis imperfecta (AI) is a collective term for failure of normal enamel development, covering diverse clinical phenotypes that typically show Mendelian inheritance patterns. One subset, known as hypoma...
متن کاملMutation Screening of ENAM, KLK4, MMP20 and FAM83H Genes among the Members of Five Iranian Families Affected with Autosomal Recessive Hypoplastic Amelogenesis Imperfecta
Amelogenesis Imperfectas (AIs) are clinically and genetically heterogeneous conditions characterized by a wide range of clinical features. These abnormalities of enamel formation are categorized into three main groups, hypoplastic, hypomaturation and hypocalcified with different modes of inheritance such as autosomal recessive (AR), autosomal dominant (AD) and X-lined recessive (XLR). In spite ...
متن کاملUltrastructural analyses of deciduous teeth affected by hypocalcified amelogenesis imperfecta from a family with a novel Y458X FAM83H nonsense mutation.
BACKGROUND Nonsense mutations in FAM83H are a recently described underlying cause of autosomal dominant (AD) hypocalcified amelogenesis imperfecta (AI). OBJECTIVE This study aims to report a novel c.1374C>A p.Y458X nonsense mutation and describe the associated ultrastructural phenotype of deciduous teeth. METHODS A family of European origin from the Iberian Peninsula with AD-inherited AI wa...
متن کاملWDR72 models of structure and function: A stage-specific regulator of enamel mineralization
Amelogenesis Imperfecta (AI) is a clinical diagnosis that encompasses a group of genetic mutations, each affecting processes involved in tooth enamel formation and thus, result in various enamel defects. The hypomaturation enamel phenotype has been described for mutations involved in the later stage of enamel formation, including Klk4, Mmp20, C4orf26, and Wdr72. Using a candidate gene approach ...
متن کامل